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Abstract. The rotational inverted pendulum is an interesting subject for some researchers, 

especially control engineers. Its nonlinear and underactuated characteristic make it quite 

challenging to stabilize it. Hence, a proper control law is a must to make it stable. Here, in this 

paper, we present a control law using LQR (Linear-Quadratic Regulator) to stabilize the 

rotational inverted pendulum. The experiments are carried out by linearizing the model and 

simulate the response in MATLAB. The results show that the controller succeeds to stabilize the 

states of rotational inverted pendulum to their respective equilibrium points. Even more, it 

provides zero settling errors. 

1. Introduction 

Over the years, the inverted pendulum has been an interesting topic for many researchers, especially in 

control engineer. It is due to its nonlinearity and unstable behavior. Therefore, in order to stabilize it, we 

need to design a proper controller [1]. There are some approaches to design the controller, either using 

linear or nonlinear methods [2]. Codrons et al. [3] and Morimoto et al. [4], have designed a nonlinear 

controller for an inverted pendulum. Meanwhile, Sugie et al. [5] and Renou et al. [6] are applying 

linearization method to design the controller. 

Unlike the linear controller, the nonlinear one is quite difficult to design. Nevertheless, we need to 

linearize the model before designing the controller. Here, we utilize Linear-Quadratic Regulator (LQR), 

a linear controller, to stabilize the rotational inverted pendulum with some advantages. First, LQR is 

such an optimal controller that can provide not only a good stability, but also the stability margin of a 

system is guaranteed [7]. It provides a better optimal energy compared againts PID and fuzzy controller 

[8]. Next, we do not need to do the loop-shaping to obtain the gain parameters. Lastly, it can work on 

Single-Input Multi-Output (SIMO) systems, which necessary for our rotational inverted pendulum. 

Practically, the rotational inverted pendulum as depicted in Figure 1, is an underactuated system. It 

means, the number of degree-of-freedom (DoF) that needs to be controlled, is more than the number of 

actuators. Meanwhile, if those numbers are equal, thus the system is fully actuated. Despite the 

difficulties to stabilize it, the underactuated systems have some advantages over the other one. Their 

main advantages are the control efforts and energy consumption which are relatively lower than the fully 

actuated systems. 
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Figure 1. Rotational inverted pendulum. 

Technically speaking, there are three main parts of rotational inverted pendulum, they are motor, 

rotational arm, and the pendulum [9]. The rotational arm can be fully rotated on a horizontal plane since 

it is connected to the motor shaft. Meanwhile, the pendulum is connected to the other end of the arm. It 

makes the pendulum can be rotated vertically. 

It is necessary to mention that this research is conducted by modeling the rotational inverted 

pendulum, then designing the controller using Matlab. Furthermore, the organization of this paper is as 

follows. It has mentioned before, that the model of rotational inverted pendulum is necessary, and it is 

elaborated in Section 2. Later, in Section 3, the design of the controller is presented. The results and 

analysis of the controller can be seen in Section 4. Lastly, the conclusion of this paper can be found in 

Section 5. 

2. Model of Rotational Inverted Pendulum 

In this section, there are two main topics that will be presented. First, the nonlinear equations of the 

model can be found in Subsection 2.1. Next, we take linearization into account, it is briefly explained 

in Subsection 2.2. 

2.1. Nonlinear Equations 

We can use Euler-Lagrange equation to obtain the nonlinear model of the system as 

𝜃̇ =
𝑑𝜃

𝑑𝑡
 , (1) 

 𝜃̈ = (𝐼 + 𝑚(𝑅2 + 𝑙2) sin2(𝜃))−1[−2𝑚𝑙 sin(𝜃) cos(𝜃) 𝛼̇𝜃̇ 

          −𝑚𝑙𝑅 sin(𝜃) cos2(𝜃) 𝛼̇2 − 𝑚𝑅𝑔 sin(𝜃) cos(𝜃) + 𝑚𝑅𝑙 sin(𝜃)𝜃̇ + 𝑢], (2) 

𝛼̇ =  
𝑑𝛼

𝑑𝑡
 , (3)  

𝛼̈ = (𝐼 + 𝑚(𝑅2 + 𝑙2) sin2(𝜃))−1  [
(𝐼+𝑚𝑅2+𝑚𝑙2 sin2(𝜃))𝛽

𝑅 cos(𝜃)
− 𝛾 − 𝑢] , (4)  

𝛽 = (𝑙 sin(𝜃) cos(𝜃)𝛼̇2 + 𝑔 sin(𝜃)) , (5) 

 𝛾 = 2𝑚𝑙2 sin(𝜃) cos(𝜃)𝛼̇𝜃 − 𝑚𝑅𝑙 sin(𝜃)𝜃̇2, (6)  

where respectively θ and α are the pendulum and rotating arm angle. Meanwhile, I, m, l, R, u, and g that 

consecutively denote moment inertia of the DC motor, mass of the pendulum, length of the pendulum, 

length of the arm, input torque, and gravity constant. 
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Those equations can be represented into a nonlinear function such as 

 𝒙̇ = 𝑓(𝒙, 𝑢) (7) 

where the states be 

        𝒙 = [𝜃   𝜃̇   𝛼   𝛼̇]     (8) 

2.2. Linearization 

In order to design a linear controller, we need to linearize those equations. We decide the equilibrium 

points such as the state vector x = [0 0 0 0] and the input torque u = 0, then it can be linearized as 

𝒙̇ =  
𝛿𝑓(𝑥,𝑢)

𝑑𝑥
|𝑥=0  + 

𝛿𝑓(𝑥,𝑢)

𝑑𝑢
|𝑢=0    (9) 

    = 𝑨𝒙 + 𝑩𝒖 (10) 

Respectively the state matrix and input vector can be denoted as   

                                                             𝑨 = 

[
 
 
 
 

0 1
𝑔(𝐼+𝑚𝑅2)

𝐼𝑙
0

0 0

0
𝑅𝑏

𝐼𝑙

0 0

−
𝑚𝑅𝑔

𝐼
0

0 1

0 −
𝑏

𝐼]
 
 
 
 

   (11) 

     𝑩 =  

[
 
 
 
 

0

−
𝑅

𝐼𝑙

0
1

𝐼 ]
 
 
 
 

              (12) 

where b is viscous coefficient. As for the output we have 

  𝑦 = 𝑪𝒙  

= [𝜃   𝛼]𝑇      (13) 

where the output matrix be 

𝑪 = [
1 0 0 0
0 0 1 0

]     (14)

      

3. Controller Design 

LQR is an optimal control that offers the robustness of a system with small steady state errors [10]. The 

block diagram of a full-state feedback controller can be seen in Figure 2. 

 

Figure 2. Block diagram of a LQR full-state feedback controller. 

As an optimal control, it comes with a cost function such as 
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𝐽(𝒖) = ∫ (𝒙𝑻𝑸𝒙 + 𝒖𝑻𝑹𝒖)𝑑𝑡
∞

0
      (15) 

that must be minimized. In our case, we have four states and one input, therefore Q is a 4-by-4 matrix, 

meanwhile R is a scalar. Both Q and R affect differently towards gain feedback K. We can obtain a 

larger gain feedback K by increasing Q. On the other hand, by assigning a larger value of R, we can 

obtain a smaller gain feedback K [10]. Next, we need to find an auxiliary matrix S by solving this 

Algebraic Ricatti Equation (ARE) where 

 ATS + SA−SBR−1BTS + Q = 0. (16) 

The auxiliary matrix S is needed to determine the gain feedback K such as 

 K = R−1(BTS). (17) 

4. Results and Discussion 

This section covers the results of this paper, including the parameters and its analysis. The parameters 

of rotational inverted pendulum used in this paper is presented in Subsection 4.1. Then, in Subsection 

4.2 we will elaborate system response with fully-state feedback controller. 

4.1. System Parameters 

Before any further, we need to define the parameters used in this simulation. 

Table 1. Parameters of rotational inverted pendulum. 

Parameters Values 

m 0.05kg 

l 0.48m 

R 0.57m 

I 0.03264kgm2 

b 0.00351kgm2 s−1 

 

Consecutively, we have m, l, R, I, and b that denote mass of the pendulum, length of the pendulum, 

length of the arm, and viscous coefficient. Those are based on the previous research conducted by 

Cahyadi et al. [1], meanwhile as for the gravity constant we have g = 9.8ms−2. 

4.2. Simulation and Analysis 

First we can analyze the stability of the open-loop system. Let us substitute those values on Table 1 and 

the gravity constant into state matrix A and input vector B, hence we have 

   𝑨 = [

0    1
7.052    0

0   0
0   0.1277

0 0
−8.557 0

0 1
0 −0.1075

]      (18) 

𝑩 = [

0
−8.3824

0
30.6373

]         (19) 

We can get the information either the open-loop system is stable or not by computing the eigenvalues 

of A. Eventually, we have the eigenvalues as 𝑒𝑖𝑔(𝑨) = [0 − 2.7316  2.5764  0.0476]𝑇.  It is apparent 

that the open-loop system is unstable since there are some elements with real positive values. 

Furthermore, we need to investigate either the system is controllable or not. It is necessary since the 



ICE-ELINVO 2021
Journal of Physics: Conference Series 2111 (2021) 012006

IOP Publishing
doi:10.1088/1742-6596/2111/1/012006

5

controller can only be applied if the system is controllable. It can be achieved by calculating the rank of 

controllability matrix Co. The controllability matrix can be calculated as follows  

𝑪𝒐 = [𝑩 𝑨𝑩 𝑨2𝑩 𝑨3𝑩]       

𝑪𝒐 = [ 

0 −8.3824
−8.3824 3.9124

3.9124 −59.5333
−59.5333 36.7950 

0 30.6373
30.6373 −3.2935

−3.2935 72.0822
72.0822 −41.2271

 ]  (20) 

Indeed, Co is a 4-by-4 matrix, that corresponds to the number of state variables. Here, we have the rank 

of Co = 4, it means that the system is controllable. 

After investigating the controllability of the system, we can move further to design a proper control 

law to make it stable. In order to design a control law using LQR, first we have to decide both Q and R. 

Here, we have 

𝑸 = 𝑪𝑻𝑪, 

      𝑸 = [ 

1 0
0 0

0 0
0 0

 

0 0
0 0

1 0
0 0

]     (21) 

and 

 𝑅 = 1.       (22) 

We chose those values to obtain an appropriately small feedback gain K that leads to a lower energy 

drive. Even though it will take longer settling time, the sparseness and small values of Q can give us 

zero settling error [10]. 

After obtaining the parameters of C, B, Q, and R, then we can solve the Algebraic Ricatti 

Equation using Matlab. Hence, we have the auxiliary matrix as 

𝐒 = [

 53.1138 24.4687
 24.4687 11.3251

6.9955 6.1891
3.233 2.8702

6.9955 3.233
6.1891 2.8702

1.1882 0.8519
0.8519 0.736

 ] 

Since the feedback gain has been obtained, we can define the control law for the full-state feedback 

system in Figure 2 as 

As the control law is being implemented, we can investigate the stability of the closed-loop system in 

the same fashion as the open-loop system. The eigenvalues of the closed-loop are 𝑒𝑖𝑔(𝑨 − 𝑩𝑲) =
[−4.1307 + 3.7968𝑖    − 4.1307 − 3.7968𝑖   − 2.1193 + 0.2947𝑖     − 2.1193 − 0.2947𝑖]𝑇. Since 

all the real elements of eigenvector are negatives, then the closed-loop system is stable. 

Now, we will simulate the response of the closed-loop system with initial states 𝒙𝟎 =
[ 0.5  0  0.4  0 ]𝑇 and the desired states 𝒙𝒅 = [ 0  0  0  0 ]𝑇. First, we have the response of pendulum 

angle as depicted in Figure 3. 

Lastly, we can solve equation (17) to obtain the feedback gain as 

 𝐊 = [ −15.4872 − 6.9955 − 1 − 1.5095 ] . (23) 

 u = r −Kx. (24) 



ICE-ELINVO 2021
Journal of Physics: Conference Series 2111 (2021) 012006

IOP Publishing
doi:10.1088/1742-6596/2111/1/012006

6

 

Figure 3. Response of pendulum angle θ. 

It takes almost 4 seconds for the controller to regulate the pendulum angle from the initial condition 

at θ0 = 0.5rad to the equilibrium at θd = 0rad. Nevertheless, it succeeds to reach the equilibrium without 

settling error. In corresponds to the pendulum angle, we have the angle rate θ˙ as shown in Figure 4. 

 

Figure 4. Response of pendulum angle rate θ˙. 

Initially, we have angle rate  𝜃0̇ = 0 𝑟𝑎𝑑/𝑠. We can see that if the angle rate 𝜃̇˙ is turning to negative 

values, then θ will follow, and vice versa. It is apparent that θ˙ will change over the time until the 

pendulum angle settling at θd = 0rad. It is also worth to be mentioned that the angle rate indicates the 

direction of rotation, either it is clockwise or counterclockwise. 

In our case, if the angle rate has negative values, it is supposed to rotate clockwise. On the contrary, 

it will rotate counterclockwise when the angle rate is positive. Just like the pendulum angle, the arm 

angle also affected by the changes on its rate. Here we have the response of arm angle α and its rate ˙α 

as illustrated in Figure 5 and Figure 6. 
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Figure 5. Response of arm angle α. 

 

Figure 6. Response of arm angle rate  𝛼̇. 

At first, we have the initial arm angle at 𝛼 = 0.4rad, meanwhile 𝛼̇ = 0rad/s. It indicates that at the 

beginning the arm angle α is stand still, does not move. To regulate the arm angle α to its equilibrium at 

αd = 0rad, then it needs to rotate. Therefore, as long as α has not settle the equilibrium, then the arm 

angle rate 𝛼̇ is not supposed to be 0rad/s. Eventually, both of them prevail to settle at their equilibrium 

points in 3 seconds. 

Inspite that the responses are quite slow, it can still be tolerated. The settling times for both θ and α 

are not our main concern here. It is due to the fact that the controller is designed to stabilize the states to 

their equilibrium points with zero settling error. 

5. Conclusion 

The rotational inverted pendulum is an underactuated system that cannot be made stable by its 

mechanical structure. Therefore, we need a proper control law to make it stable. In this paper we present 

the design of LQR controller for rotational inverted pendulum by considering the sparseness and small 

value of Q. Although the response is supposed to be slower, but it can give us zero settling error. The 

experiments are conducted by employing Matlab to simulate the response of the system with our 

proposed controller. The results verify that the proposed controller can be used to stabilize the pendulum 

and arm angle to their respective equilibrium. Respectively, it takes around 3 and 4 seconds to stabilize 
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the arm and pendulum angle without settling error. Indeed, our focus is to stabilize the arm angle and 

pendulum angle to their equilibrium points, therefore a sluggish response is still acceptable. 
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